NATURAL PROPULSION IN SHIP DESIGN

ECONOWIND

Wind Assisted Ship propulsion

FRANK NIEUWENHUIS

LADY CHRISTINA

THE CONTRIBUTION OF WIND

ECONOWIND

Wind Assisted Ship propulsion

FRANK NIEUWENHUIS

LADY CHRISTINA

SHIPPING OWNER PAINS

Shipowner's challenge:

- IMO: from 2023 ships must reduce carbon intensity by 2% annually
- 2023: EU ETS will add costs per ton CO2 to shipping

It is an ongoing proces.....

..... starting today

• IMO: by 2050 target to lower emission intensity by 70%

ECONOWIND

IMO EXPECTATIONS

A wide variety of design, operational and economic solutions

WIND?

power 2 fuel concept: the long way from wind energy to driving force...

ECONOWIND

power 2 fuel concept: the long way from wind energy to driving force...

NOT ALWAYS GOOD WINDS: HYBRID SYSTEMS

ECONOWIND

500

1000

1500

2000

ON RENEWABLE ENERGY

2500

€/kWh

3500

4500

4000

5000

5500

6000

6500

3000

eLOHC LT PEM Fuel Cell 5983.87 % Wind lowest € / kWh eNaBH4 (recycled) LT PEM Fuel Cell 5665.56 % CH2O2 (biogenic CO2) Reformer PEMFC 1649.27 % Wind does not need infrastuctre eNH3 LT PEMFC 461.95 % eCompH2 700 bar LT PEM Fuel Cell 445.73 % Wind is readily available now 358.29 % C2H5OH (sugar/starch) LT PEM Fuel Cell 349.17 % NH3 LT PEMFC eCH3OH (flue gas CO2) LT PEM Fuel Cell 320.35 % Wind varies CNG (organic waste) SOFC Fuel Cell 301.19% Electricity (EU mix) Shore Power 219.51 % eNH3 SOFC 214.60 % Color legend: CNG LT PEM Fuel Cell 205.11 % Uncategorized Fossil CompH2 700 bar LT PEM Fuel Cell 161.99 % Biomass Electricity (renewable) Battery Electric 130.83 % Metal Electricity (fossil) Battery Electric 112.93 % Renewables EU mix Electricity (renewable) Shore Power 110.38 % 100 % Diesel (MGO) ICE CI 2-stroke 95.28% Electricity (fossil) Shore Power 7 Wind 0%

ECONOWIND

THE SINGULARITY POINT IS HERE!

2 APPROACHES TO **O**-EMMISION

Start 0 emission and scale-up

Start at current ships and increase savings

2 APPROACHES TO **O**-EMMISION

Start 0 emission

Scale up

Multiply by 20.000

2 APPROACHES TO **O**-EMMISION

Start at current ships

Add Wind Assisted propulsion

Scale up

Multiply by 20.000

: MANY WIND ASSISTED SYSTEMS AVAILABLE

2011 - 2015 Wind propulsion studied

29-09-2018

eConowind-unit: Wind Assisted Ship Propulsion

RESULTS FEASIBILITY STUDY CONOSHIP

Conclusion :

• Wind assisted propulsion is feasable.

• Start with systems up to 25% fuel reduction.

WIND PROPULSION STUDIED

Most promising:

Suction Sail

Jacques Cousteau ~1985

Concept:

- Suction Sail
- Foldable
- Fixed, flatrack or Containerized

Containerized:

MAYDEN VOYAGE ON MV LADY CHRISTINA

NEWTIDE FRISIAN SEA

Flatrack Movable by hatchcrane

Retrofit:

Why "Suction Sail" ?

06-12-2018

Wing with Suction:

Triple force By optimal aerodynamics

AERO DYNAMICS

Wing without Suction:

Limited force By stalling wing

AERO DYNAMICS

REALITY

Speed increases

REALITY

Maximal saving at original speed

Conclusion:

We need to evaluate extra speed and fuel consumption

European Regional Development Fund

EUROPEAN UNION

Testing for Real:

MV Ankie: 10 x 2,1m

MV Ankie: 10 x 2,3m

European Regional Development Fund

EUROPEAN UNION

European Regional Development Fund

EUROPEAN UNION

Prediction

	0				0	15							
	ship spee	d	Distance	time	True wind	wind to	Apperent	Angle to	Cx	Thrust	Total	Motor force	Force
					speed	heading	wind speed	heading	Thrust	Force	Resistance		reduction
									coef		ship		%
	knots	m/s	miles	hours	m/s	degrees	m/s	degree		Fwd kN	kN	kN	
stretch 1	9	4,63	1000	111	10	0	14,6	0,0	-1,3	0,0	50	50	0,0%
stretch 2	9	4,63	1000	111	10	15	14,5	10,3	-0,3	0,0	50	50	0,0%
stretch 3	9	4,63	1000	111	10	30	14,2	20,6	0,6	3,1	50	47	6,2%
stretch 4	9	4,63	1000	111	10	45	13,7	31,1	1,6	7,1	50	43	14,2%
stretch 5	9	4,63	1000	111	10	60	13,0	42,0	2,5	10,2	50	40	20,1%
stretch 6	9	4,63	1000	111	10	75	12,1	53,2	3,4	12,0	50	39	23,7%
stretch 7	9	4,63	1000	111	10	90	11,0	65,2	4,2	12,5	50	38	24,8%
stretch 8	9	4,63	1000	111	10	105	9,9	78,1	5,0	12,0	50	39	23,7%
stretch 9	9	4,63	1000	111	10	120	8,7	92,4	5,7	10,6	50	40	20,9%
stretch 10	9	4,63	1000	111	10	135	7,5	109,0	6,3	8,7	50	42	17,1%
stretch 11	9	4,63	1000	111	10	150	6,4	128,9	6,6	6,6	50	44	13,1%
stretch 12	9	4,63	1000	111	10	165	5,7	152,8	6,1	4,8	50	46	9,5%
stretch 13	9	4,63	1000	111	10	180	5,4	180,0	4,4	3,1	50	47	6,1%
				1444									

Prediction 9 knots, 10 m/sec: 20 – 25%

	ship speed Di		Distance time		True wind	wind to	Apperent	Angle to	Сх	Thrust	Total	Motor force	Force
					speed	heading	wind speed	heading	Thrust	Force	Resistance		reduction
									coef		ship		%
	knots	mys	miles	hours	m/_	degrees	m/s	degree		Fwd kN	KN	KN	
stretch 1	9	4,63	1000	111	10	0	14,6	0,0	-1,3	0,0	50	50	0,0%
stretch 2	9	4,63	1000	111	10	15	14,5	10,3	-0,3	0,0	50	50	0,0%
stretch 3	9	4, 13	1000	111	10	30	14,2	20,6	0,6	3,1	50	47	6,2%
stretch 4	9	4,63	1000	111	10	45	13,7	31,1	1,6	7,1	50	43	14,2%
stretch 5	9	4,63	1000	111	10	60	13,0	42,0	2,5	10,2	50	40	20,1%
stretch 6	9	4,68	1000	111	10	75	12,1	53,2	3,4	12,0	50	39	23,7%
stretch 7	9	4,68	1000	11	10	90	11,0	65,2	4,2	12,5	50	38	24,8%
stretch 8	9	4,63	1000	11.	10	.05	9,9	78,1	5,0	12,0	50	39	23,7%
stretch 9	9	4,63	1000	11.	10	120	8,7	92,4	5,7	10,6	50	40	20,9%
stretch 10	9	4, 3	1000	111	10	135	7,5	109,0	6,3	8,7	50	42	17,1%
stretch 11	9	4 63	1000	111	10	150	6,4	128,9	6,6	6,6	50	44	13,1%
stretch 12	9	4,63	1000	111	10	165	5,7	152,8	6,1	4,8	50	46	9,5%
stretch 13	9	4,63	1000	111	10	180	5,4	180,0	4,4	3,1	50	47	6,1%
				1444		/							

ECONOWIND

Sailing:

Influence of shipspeed

SOG = 0 [kts]

SOG = 10 [kts]

SOG = 12 [kts]

SOG = 14 [kts]

SOG = 10 [kts]

Results:

Results:

In reality over whole year / all routes?

MEASURING IN ACTION

Measurements over 2 years period

European Regional Development Fund

EUROPEAN UNION

TAKE AWAY MESSAGE:

- Wind assist is available TODAY
- Savings can equal leasing costs
- Changing to new fuels is easier with WASP

Thank you for watching

Questions?

nieuwenhuis@econowind.nl