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diesel engines) and propulsion systems and energy management improvements,

have already significantly contributed to reducing both CO, and nitrogen oxides |

(NO,) emissions from marine diesel engines PR o bl e i
Despite these stringent regulations, the propulsion and power generation plants
for future ships must significantly reduce fuel consumption and emissions over the coming years

The use of available wind power for merchant shipping has seen an increased interest due to rising fuel
costs, ever-stringent environmental protection requirements (especially stringent in specific emission
control areas, ECAs**), and resulting increased operational costs, etc.

The purpose of this paper is to address a reduction of pollution from hydrocarbon (HC) emissions present in
the exhaust of heat engine-powered merchant ships, specifically, during operations of such ships both
near, and in port.

The present research is focusing on the feasibility of the Flettner rotor —-powered marine vessels, which
could be used to reduce HC fuel consumption and exhaust emissions towards green (or “more-green”)
energy technologies to be implemented in ship propulsion systems.

**CO,- Emissionen der Schifffahrt bisher stark unterschéatzt”, (“CO, emisions from shipping have so far been greatly underestimated”) Greenpeace Redaktion, 13.02.2008 (based on article in The Guardian) 3

**ECAs — emission control areas can be designated for SOx, PM, or NOx (or all three types of emissions combined)
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a Croix around when a sampan was fitted with a single rotor operated by hand gears.
» First ship trials in 1924 with ship “Buckau” using two rotors designed by Anton Flettner.

« In 1927, a larger ship, “Barbara” uses three Flettner rotors
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(Graphics adapted from Science Mag)

4t conference on Ship Efficiency, Hamburg, Germany, 23-24 September, 2013


https://www.stg-online.org/onTEAM/shipefficiency/programm/06-STG_Ship_Efficiency_2013_100913_Paper.pdf

savings of up to 25%.

* A growing number of existing vessels are being retrofitted with Flettner rotors
as well as some new ship builds.

*  While other wind-assisted propulsion systems (WASPSs) are being explored
(e.g., wing-sails, turbo-sails, etc.,) Flettner rotor technology appears to be 40 confrencean Ship Effency, anbuey, Germsry, 23.2

leading the way with numerous options for growth, including tilt-rotor applications for
maneuvering below bridges.
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https://www.stg-online.org/onTEAM/shipefficiency/programm/06-STG_Ship_Efficiency_2013_100913_Paper.pdf
https://www.norsepower.com/
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https://www.norsepower.com/
https://gcaptain.com/stena-bulk-unveils-energy-efficient-product-tanker-prototype/
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Due to the lack of 3D capabilities, we were unable to fully investigate the Height of the Rotor, H/D
Ratio, Turbulence, End Cap Considerations, Surface Roughness, and Materials considerations.
However, some of these considerations have been investigated through prior research; in turn,
these parameters were based on this respective prior research (Flettner, 1926).

For further/future investigations, more advanced software would be necessary to better optimize
the Flettner Rotor analyses.

Overall, any parameters not investigated will be supplemented with conclusions found through
experimental work.

Moreover, the parameters that cannot be demonstrated within the EasyCFD software will be
tested with the 3D-printed prototypes to obtain quantitative data on the effects of varying these
parameters.

The 3D-printed prototype Flettner rotors will be tested on a scaled model of a Type C2 class
cargo ship. 8



+ Consequently, the parameters that were unable to be investigated with the 2D EasyCFD
modelling can be further analyzed through experimentation.

* The two dimensions printed for the models were 10 cm length with 3.8 cm diameter and 12.7 cm
length with 5.1 cm diameter. These were stacked to create rotors of 20 cm and 25.4 cm length.
This configuration allowed for a height-to-diameter ratio of 5.26 and 4.98, respectively.

3D-printed rotors, singular,10/3.8 cm and stacked 20/3.8 cm and 25.4/5.1 cm Singular printed rotors, 12.7/5.1 cm and 10/3.8 cm



Steel plates weights were distributed inside the USMMA hull the allow the model to reach its

correct design draft.

Careful balancing of the weighted model at the correct draft was completed* in the experimental

water tank at the USMMA Fluids Lab.

A museum-quality ship model (below, middle), in similar scale to the USMMA model, of the C2-

class currently on display at the American Merchant Marine Museum**

A comparison between the basic dimensions of the Series 60 (Model 4212W) and the USMMA

ship model hull are shown in Table 1 (below, right).

Table 1. Basic characteristics of Series 60 hull
(Model 4212W) and the USMMA ship model hull

Series 60 Model
(Model 4212W) (1:100)
Dimension | English SI SI
Lgp, ft /m 400.00 12192 122
B, ft/m 5333 1742 0.17
H,ft/m 2133 6.97 0.07
A, Tons 10436 10436 N/A
. ) Cg 0.70 0.70 0.70
USMMA Ship Model Hull AMMM Ship Model of C2 class cargo ship t“ﬂja‘:‘:m) T T
BH 250 250 250
*We are grateful to Dr. Sergio Perez for this effort. Further details can be found in these two prior publications (Perez, 2023a; Perez, 2023b). . 7
WS, £/ m 31705.00 | 204549 2045

*American Merchant Marine Museum, Kings Point, NY, USA.
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https://www.usmma.edu/museum
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Lift for Rotor diameter D = 1.61 m Lift for Rotor diameter D = 0.20 m
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* Notably, there are several variations to each design that we investigated in addition to the designs
presented below.
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Rotors in “in-line” configuration

Vessel
" Direction

Rotors in “side-by-side” configuration

| of Motion

Rotors in “in-wake” configuration
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Rotor Spacing (In-Wake of Rotor #1) vs. Lift - Drag Rotor Spacing (In-Wake of Rotor #1) vs. Total Lift
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Propulsion Foree (N)

of the rotors was 1-m apart.
* The maximum propulsion (Lift) force was achieved with the vessel

6114

5.259
perpendicular to the wind (at 90°), as expected (below, left).
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Propulsion (Lift) vs angle to the wind



Yessel Direction
of Motion
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Within this source, Wingsails, Towing Kites, Flettner Rotors, and Wind Turbines are described.
In general, the Average Relative Savings presented in this report indicate that Flettner rotors and
Wingsails provide the most substantial savings predominantly for large vessels (large bulk
carriers and large tankers compared to small vessels )(as shown in Table 2 below).

These solutions work best for larger vessels primarily due to the availability and space for larger
wind power devices, and the larger wind speeds experienced in large sea going vessel
applications.

Table 2. Average Relative Saving Across Vessel Voyages

Rotor Wingsail Towing Wind

kite turbine

Large bulk carrier (90,000 dv/t) 17% 18% 5% 2%

Small bulk carrier (7,200 dwit) 5% 5% 9% 1%
Large tanker (90,000 dwt) 9% 9%, 3% 1% 23

Small tanker (5,400 dvet) 5% 5% 9% 1%
















® A directly proportional relationship between Flettner rotor rotational speed, and resulting lift.
This appears to be optimized with respect to the lift to drag ratio at approximately 10 to 15
meters per second.

® The 4-staggered Flettner rotor configuration is best observed option, due to the addition of
thrust when adding Flettner rotors. However, having a configuration with one rotor forward and
one rotor aft would assist with the vessels manueverabilty and ability to turn.
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to-model Flettner rotors

* Investigate effects of “end caps” on Flettner rotor performance, as this is difficult to model with the
CFD software.

* Investigate various locations of Flettner rotors on ship decks relative to ships CG
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