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Greenhouse gas emissions MARIN|

I oRcaNiZATION IMO Greenhouse Gas Strategy:

uptake of zero and near-zero
GHG fuels by 2030 (at least 5%)

reduce CO, emissions per
transport work in 2030 by 40%
compared to 2008

net-zero GHG emissions close
to 2050




Greenhouse gas emissions MARIN
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Source: https://www.imo.org/en/MediaCentre/HotTopics/Pages/EEXI-CII-FAQ.aspx



URN from ships: impact on marine life

Growing evidence of impact of underwater 6
radiated noise (URN) of ships on marine life

IVIaSking Of Sounds USEd for: Source of URN vs. cetaceans vocalisations
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inventory of existing policy, research and impacts of continuous underwater noise in Europe
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URN from ships: sources

Source Level [dB re 1 pPa’m?]
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URN from ships: sources

Source Level [dB re 1 pPaZm?]
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URN from ships: regulations, and MARIN
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Energy efficiency and URN reduction

IMPROVED  ==wi POWER SPEED
HULL LIMITATION OPTIMIZATION
DESIGN

REDUCED
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Source: https.//www.imo.org/en/MediaCentre/HotTopics/Pages/EEXI-CII-FAQ.aspx



Example of mitigation measures

A

3
)

oL/

Optimise the hull design
Minimise resistance
Optimise propeller inflow

Optimise the propeller design
Trade-off efficiency and noise reduction

Change the propulsor concept
Pumpjet, trochoidal propeller, etc.

Use wind-assistance
Reduce required thrust

10



Example of mitigation measures MARIN
Inject air bubbles: ﬁ

Air lubrication to reduce resistance

o
@ @ Around hull against machinery noise (“Masker system”)
@) Into the cavitation (“Prairie-like system”)

oy Clean the hull and propeller
Minimise required thrust
— Reduce speed

Minimise required thrust

On-board monitoring for real-time advice
11



Hull form optimisation MARIN
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Propeller design
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Integrated hull & propeller design

Traditionally: ar

optimise hull form for

0
Integrated aproach: =
©
optimise hull form and ;
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Change propulsion concept (SATURN WP4) MARIN
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Change propulsion concept (SATURN WP4) MARIN
YLETENA © -

Consiglio Nozioncle
delle Ricerche

Retrofitted configuration

* Suppresses cavitation on rotor

* Improves efficiency +2% in
comparison with existing propeller
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Wind assistance

*  Wind assistance reduces thrust
delivered by propeller
* Reduced cavitation (reduced noise)
* Reduced GHG emissions

* Additional complexity in propeller
design:
*  Obligue inflow into propeller due to
sailing at a drift angle

* Propeller works has multiple design 1
conditions i

* Consequences thereof on efficiency and-
noise currently being researched

CO,; EMISSION

g 64 (-1 )

round (kn)

M wind assist W reference gram/tonnes * nautical mile
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Air injection

* Air lubrication

* Various studies show around 5%
reduction of fuel consumption

SILVERSTREAM
b LOGIES

TEGCHNO

https://www.silverstream-tech.com/

* Along the hull to reduce
machinery-induced URN: |
»  Masker system e/

Masker belts positioned around the hull

* Into the propeller disk to reduce
cavitation-induced URN: -\

° Prairie-like System Bubbles injected in propeller inflow

18



Air injection: Masker system (SATURN WP4)

Masker belts positioned around the hull

19






Injection: Masker system (SATURN WP4) MARIN

¥

Masker belts positioned around the hull
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Air injection: Masker system (SATURN WP4)

Masker belts positioned around the hull

L / dB

V., = 2.13 m/s; white noise, no filter; V,, = 1.7 V

25 7
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Air injection: Prairie-like system (SATURN WP4)

\

Bubbles injected in propeller inflow




Air injection: Prairie-like system (SATURN WP4)
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\

Bubbles injected in propeller inflow

Small influence
of air bubbles
on propeller
thrust and
efficiency
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Application of air injection: 173 m cargo vessel

Source Level [dB re 1 pPaZm?]
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Bubbles injected in propeller inflow

Masker belts positioned around the hull
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Application of air injection: 173 m cargo vessel

Insertion loss due to Masker system

8 knots, 68 rpm

25
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Big Bubble Curtain data: M.A. Bellmann (2014). Overview of existing Noise Mitigation Systems for reducing Pile-Driving Noise
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Application of air injection: 173 m cargo vessel

Source level attenuation due to Prairie-like system

15

= Prairie (12 knots, 106 rpm): @ (x10°%) = 16.7 m3/s
= Prairie (14 knots, 140 rpm): @ (x10°%) = 25.0 m3 /s
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MARIN
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Application of air injection

Resulting noise levels
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Prairie-like system: influepropeller design
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Effect of speed reduction on URN and GHG emissions

MARIN
Speed reduction very effective 6
against URN 5
JOMOPANS-ECHO model* 0 _

10% speed reduction yields:
3 dB noise reduction
13% GHG emission reduction**
Some studies state 30% GHG
emission reduction

Big step in noise reduction:

Reduce speed to cavitation
inception speed (CIS)

CIS not in JOMOPANS-ECHO model

10 12 14 16 18 20 22

AL [dB]

-10

-15

-20
Ship speed [knots]

* MacGillivray & De Jong (2021)
** Faber et al. (2017)
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Effect of speed reduction on URN (SATURN WP3) MARIN

Higher source level Lower source level i
Vessel noise ! : % -

swath

Instantaneous footprint in % of max
3

W ——————

]

]

1 1

18 14 10 6
Source-level reduction (dB)

Source: Findlay et al. (2023). Small reductions in cargo vessel speed substantially reduce noise impacts to marine mammals

25% speed reduction:
Source-level reduction of 6 dB:
50% reduction in the swath
75% reduction in the instantaneous acoustic footprint
Transit time increased by 25%

Net reduced noise impact: footprint deceases more than transit time increases
30



Cavitation URN estimation by onboard sensors

How slow is slow enough?

Onboard monitoring to
estimate URN real-time

Tested on RV Pelagia

4 pressure sensors and 4
accelerometers on hull above
propeller

Real-time advice:
Reduce speed to reduce noise

Bosschers et al. ICSV2023
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Validation of URN estimation by onboard sensors MARIN

Peak in URN caused by diesel generator

Source Level [dB re 1 ,u,Pa2 m2]
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32



Route optimisation

* Optimise route for minimum noise impact:
*  Minimise speed (in areas with sensitive wildlife)
*  Optimal use of wind assistance
* Just-in-time arrival
* Try to avoid increasing speed to compensate for

slowing down

* More ships needed due to speed
reduction:

* Reduced fuel costs compensate
operational costs of additional ships

Lee et al. (2015)
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Cost-benefit analysis (SATURN WP4)

SATURN: Cost-benefit analysis of
mitigation solutions
KPI: Capital costs + operational costs

Depends on ship type and operational profile
KPI: Reduction of impact on marine
species

Translate change in source levels to change in
impact for single ship

KPI: Impact on energy efficiency

Use will be made of LCPA software

Total KPI Results

Energ
* Global Warming Potential
Economic assessment:

34



Summary MARIN

To be done 6

What are win-win solutions?
Speed reduction is a win-win but there is a need to deliver goods on time

Technological mitigation measures can help to increase flexibility in ship
speed while maintaining acceptable noise and GHG emissions

- Saturn

Developing Solutions for
Underwater Radiated Noise

SATURN has received funding

from the European Union’s

Horizon 2020 research and

innovation programme under

grant agreement No. 101006443, 3§



Thank you

Frans Hendrik Lafeber
f.lafeber@marin.nl
+31611109736

www.marin.nl
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