

Nuclear Reactors for Decarbonized Civil Maritime Transportation

Jonathan E. Stephens, P.E. JEStephens@bwxt.com BWXT Advanced Technologies, LLC

Decarbonizing maritime transportation is an extraordinary challenge...

IMO Decarbonization Strategy

Typical Well-to-Wake CO₂ Emissions of Marine Fuels (normalized per unit energy produced)

SOLUTION OPTIONS:

- 1. e-fuels generated via zero-carbon energy
- 2. On-ship clean energy generation

Production of e-fuels using nuclear energy

- Zero-emission
- High power density needed for sufficient fuel volumes
- Consider fuel volume and safety

- o or, on-board nuclear electric plant
 - Zero-emission, low noise
 - Small footprint
 - Stable operational costs
 - Potential for higher ship speed
 - Ability to redirect electric power to shore
 - Legal and regulatory challenges

BWXT Company Highlights

BWXT is one of the world's most prolific nuclear technology innovation companies and the sole manufacturer of naval nuclear reactors for U.S. submarines and aircraft carriers.

165-Year History of Innovation 75-Year History of Nuclear Technology

1856

Stephen Wilcox patented the water tube boiler

1907

Teddy Roosevelt's Great White Fleet powered by B&W boilers

NON-NUCLEAR

Awarded first U S Navy contract for propulsion systems

1946

1953

Designed and fabricated components for world's first nuclear powered submarine

NUCLEAR

1956

Manufactured components for first commercial nuclear power plant in the U.S.

1962

Designed and furnished commercial nuclear reactor systems for Indian Point

1966

Initiated design and fabrication of nuclear components for Nimitzclass aircraft carriers

1994

Awarded first major DOE site management and operating contract at Idaho National Engineering and Environmental Laboratorv

1997

Awarded first prime contract from DOE

2015 Selected for design and manufacturing contracts for HPR1000 nuclear plant

2017 Awarded NASA Nuclear **Thermal Propulsion** Reactor Design contract

2018 Announced disruptive medical isotope manufacturing technology

BWXT ERA

2019 Introduced FDA-approved medical isotope In-111 generic for diagnostic imaging to the U.S. market

2020

Restarted TRISO advanced nuclear fuel manufacturing for future DoD and NASA missions

2020

Awarded DoD contract for mobile nuclear reactor design

1856

Ongoing Projects in BWXT Advanced Technologies

Marine nuclear, even civilian, is not new!

Sevmorput (Rosatom) – 61,000 dwt cargo/icebreaker, 1988-present

NS Savannah (US) – civilian passengercargo liner operated from 1962-1965

Reactor technology is continuously improving, but the big catalyst today is the DRIVE FOR DECARBONIZATION

Naval Nuclear Steam Supply System

- SUB-CRITICALITY the ability to "shut down" the self-sustaining nuclear fission reaction
 - Chernobyl disaster exemplifies failure to control nuclear criticality
 - American reactor designs utilize configurations that ensure this type of accident is <u>impossible</u> per the laws of physics; e.g. "negative reactivity feedback"
- DECAY HEAT REMOVAL the ability to keep reactor components below melting temperatures during fission product decay in a shutdown reactor
 - Three Mile Island & Fukushima exemplify failure to remove decay heat
 - Advanced reactors make use of "passive cooling" concepts
 - In HTGRs like BANR (for example), maximum temperatures possible during accident scenarios remain below the melting points of advanced materials
- RADIATION SHIELDING minimizing radiation dose during and after operation

• Many reactor technologies exist, though TRL (Technical Readiness) varies

- o <u>Civil</u> maritime nuclear will likely differ from <u>naval</u> propulsion:
 - Commercial maritime reactors will <u>not</u> utilize HEU fuel (>20% U-235)
 - Commercial maritime nuclear plants will produce power to drive electric motors, rather than direct mechanical propulsion
- Nuclear and wind solutions are <u>not</u> mutually exclusive!

Example System Architecture – On-ship Nuclear Plant

© 2022 BWX Technologies, Inc. All rights reserved.

11

The biggest challenges to moving forward are not technical ones!

Tackling these challenges will require close collaboration between industries & their trade groups, and government(s).

For more information on commercial maritime nuclear developments, check out the NRIC Maritime Nuclear Application Group at: <u>https://nric.inl.gov/maritime/</u>

Questions?

